

Effective from Session: 2024-25							
Course Code	B100501	Title of the	Biostatistics and Bioinformatics		т	D	6
Course Code	T / BS309	Course				P	Ľ
Year		Semester	V	3	1	0	4
Dro Boguisito	10+2	Co roquisito					
Pre-Requisite	Biology	Co-requisite					
Course Objectives	The objectiv	e objective of this course is to develop the understanding of biostatistical and bioinformatical techniques.					

	Course Outcomes
CO1	Learn the need of statistical approach, identify the different axiomatic approach and study the variability of observation
CO2	Know effective use of Office package –word, excel, ppt and publisher etc
CO3	Understand simple calculation using excel
CO4	Understand the basic theories and practical of common computational tools and databases which facilitate investigation of
	molecular biology and evolution-related concepts
CO5	Critically analyse and interpret results of their studies with the help of bioinformatical and biostatistical tools.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	History and introduction to Bioinformatics	Introduction and applications of bioinformatics. Data generation; Generation of large scale molecular biology data. (Through Genome sequencing, Protein sequencing, Gel electrophoresis, NMR Spectroscopy, X-Ray Diffraction, and microarray). Applications of Bioinformatics	6	CO1
2	Databases, Data generation, Data storage and retrieval	General Introduction of Biological Databases; Nucleic acid databases (NCBI, DDBJ, and EMBL), Protein databases (Primary, Composite, and Secondary); Specialized Genome databases: (SGD, TIGR, and ACeDB); Structure databases (CATH, SCOP, and PDBsum)	8	CO2
3	Sequence and Phylogeny analysis	Introduction to Sequences, Alignments and Dynamic Programming; Local alignment and Global alignment (algorithm), Pairwise alignment (BLAST and FASTA Algorithm) and multiple sequence alignment (Clustal W algorithm)	8	CO2
4	Searching Databases	SRS, Entrez, Sequence Similarity Searches-BLAST, FASTA, Data Submission; Gene identification tools	6	CO3
5	Types and Collection of data	Primary and Secondary data, Classification and Graphical representation of Statistical data; Measures of central tendency and Dispersion; Measures of Skewness and Kurtosis.	8	CO3
6	Probability	Definition of probability, Theorems on total and compound probability, Elementary ideas of Binomial, Poisson and Normal distributions.	8	CO4
7	Sampling	Methods of sampling, confidence level, critical region, testing of hypothesis and standard error, large sample test and small sample test; Problems on test of significance, t-test, chi-square test; for goodness of fit and analysis of variance (ANOVA)	8	CO4
8	Correlation and Regression	Types, Karl-Pearson's correlation, Spearman's Rank correlation, Regression equation and fitting; Main features of regression analysis-simple and multiple regression analysis; Differences between correlation and regression analysis	8	CO5
Roforo	nce Books:			

1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.

4. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell

5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.

6. Sharma V. Munjal A. Shanker A.(2018). A Textbook of Bioinformatics (2nd Edition). Rastogi Publication.

7. Choudhuri S. (2014) Bioinformatics for beginners. (1st edition) Elsevier

8. Rastogi SC. Mendiratta N. Rastogi P. (2013). Bioinformatics Methods and Applications Genomics Proteomics and Drug Discovery. (4th edition). Prentice Hall India Learning Private Limited

9. Rastogi VB. (2015). Biostatistics (3rd Edition). MedTec

e-Learning Source:

PO-PSO	DO1	000	002	DO4	DOE	DOG	007		0000		
CO		POZ	P03	P04	P05	P00	P07	P301	P302	P305	P304
CO1	3	1					2	3			3
CO2	3	1					2	3			3
CO3	3	1					2	3			3
CO4	3	1					2	3			3
CO5	3	1					2	3			3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	Effective from Session: 2024-25							
Course Code	B100503 T / BS319	Title of the Course	Genetic Engineering	L	т	Р	с	
Year	Ш	Semester	V	3	1	0	4	
Pre-Requisite	10+2 in Biology	Co-requisite						
Course Objectives	The course has Screening and mutagenesis (S	he course has been designed to make students aware of DNA manipulative enzymes and Gene cloning vectors, creening and selection of recombinants, Techniques used as Polymerase chain reaction (PCR), Site directed butagenesis (SDM). Nucleic acid sequencing and Application of r-DNA techniques						

	Course Outcomes
CO1	Get proper knowledge about the DNA manipulative enzymes: Restriction enzymes and DNA ligases, and Gene cloning
	vectors, In vitro construction of recombinant DNA molecules
CO2	Gain knowledge about isolation of genomic and plasmid DNA, creation of rDNA and methods of Transformation
CO3	Learn about screening and selection of recombinant host cells, Gene Libraries, cloning techniques, Expression of cloned DNA
CO4	Learn about the basics of Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed mutagenesis (SDM),
	Nucleic acid sequencing: Blotting techniques.
CO5	Gain knowledge of Application of r-DNA technique in human health, Production of Insulin, Production of recombinant vaccines:
	Hepatitis B, Production of human growth hormone.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	DNA manipulative	Restriction enzymes, DNA ligases, Polymerases, Kinases, Alkaline	R	CO-1
Ŧ	enzymes	phosphatases, Reverse Transcriptase	υ	CO-1
2 Voctors		Gene cloning vectors: Plasmids, Bacteriophage and Chimeric plasmids. In	Q	CO_1
Z	Vectors	vitro construction of recombinant DNA molecules (pBR332, pUC19)	0	0-1
3	Isolation of DNA	Isolation of genomic and plasmid DNA	8	CO-2
4	rDNA	Creation of r-DNA, Transformation of r-DNA by different methods.	8	CO-2
E	Screening and selection of Immunological screening, colony hybridization and blue-white screening.		6	CO 2
5	recombinant host cells		0	0-3
6	Gono Librarios	Preparation and comparison of Genomic DNA and cDNA library,		60.3
0	Gene Libraries	Expression of cloned DNA in <i>E. coli</i> .	0	0-5
		Electrophoretic techniques, Polymerase chain reaction (PCR), Site directed		
7	Techniques	mutagenesis (SDM), Nucleic acid sequencing: Sanger's method, Blotting	8	CO-4
		techniques: Southern, Western and Northern blot.		
		Application of r-DNA technique in human health, Production of Insulin,		
8	Applications	Production of recombinant vaccines: Hepatitis B, Production of human	8	CO-5
		growth hormone.		

Reference Books:

1. Glick, B.R & Pasternak J.J (1994) Molecular Biotechnology, Princi[ples and Applications of Recombinant DNA, American Society for Microbiology, Washington D.C

2. Christopler H. (1995) Gene cloning and Manipulating, Cambridge University Press

3. Nicholl, D.S.T (1994) An Introduction of Genetic Engineering, Cambridge University Press.

4. Old. R.W. and Primrose, S.B. (186) Principles of Gene manipulation, An introduction to genetic engineering (3rd Edition) Black well Scientific Publications

5. Watson J.D. Hopkins, N.H Roberts, J.W.Steitz J.A and Weiner A.M (1988). Molecular biology of society for Microbiology

6. Lewin b. (1994) Genes VI, New York, Oxford University Press

e-Learning Source:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-													
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		
со													
CO1	3	1					2	3	3	3			
CO2	3	1					2	3	3	3			
CO3	3	1					2	3	3	3			

CO4	3	1	2	2		3	3	3	3	
CO5	3	1	1	1	1	3	3	3	3	1

Nama 9 Cian of Ducayous Coordinator	Cian & Cool of UpD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Ses	Effective from Session: 2024-25							
Course Code	B100502P /	Title of the	Bioinformatics and Biostatistics Lab		т	р	C	
course coue	BS390	Course				F	Ľ	
Year	III	Semester	V	0	0	4	2	
Pre-Requisite	10+2	Co-requisite						
Course Objectives	The course is designed to train the students in bioinformatical and biostatistical tools							

	Course Outcomes								
CO1	Understand about information resources.								
CO2	To understand the use of data search tools								
CO3	Understand use of gene prediction methods and primer designing								
CO4	Understand the use of biostatistical methods.								
CO5	Learn the designing of diagram, chart and plots								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp-01	Use of sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/TrEMBL, UniProt.	4	CO-1
2	Exp-02	Use of similarity search tools FASTA and BLAST.	2	CO-2
3	Exp-03	Multiple sequence alignment using ClustalW and interpretation of results.	2	CO-2
4	Exp-04	Use of gene prediction methods (GRAIL, Genscan).	2	CO-3
6	Exp-05	Use of different protein structure databases (PDB, SCOP, CATH etc.).	4	CO-3
7	Exp-06	Computations analysis of biological data by Mean, Median, Mode, S.D., Correlation	2	CO-4
8	Exp-07	To perform Regression Analysis, Chi square test, Student test, ANOVA.	4	CO-4
9	Exp-08	Designing of bar diagram, pi chart, histogram, scatter plots	4	CO-5

Reference Books:

1. Lesk, A. M. (2002). Introduction to Bioinformatics. Oxford: Oxford University Press.

2. Mount, D. W. (2001). Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 3. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. New York: Wiley-Interscience.

4. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.: Wiley-Blackwell

5. Bourne, P. E., & Gu, J. (2009). Structural Bioinformatics. Hoboken, NJ: Wiley-Liss.

6. Sharma V. Munjal A. Shanker A.(2018). A Textbook of Bioinformatics (2nd Edition). Rastogi Publication.

7. Choudhuri S. (2014) Bioinformatics for beginners. (1st edition) Elsevier

8. Rastogi SC. Mendiratta N. Rastogi P. (2013). Bioinformatics Methods and Applications Genomics Proteomics and Drug Discovery. (4th edition). Prentice Hall India Learning Private Limited

9. Rastogi VB. (2015). Biostatistics (3rd Edition). MedTec

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
СО	101	102	100		105	100	107	1301	1002	1303	1301			
CO1	3	1						3		3				
CO2	3	1		3		3	1	3	2	3				
CO3	3	1		3		3	1	1		3				
CO4	3	1		3		3	1				3			
CO5	3	1		3	3	3	1				3			

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from S	Effective from Session: 2024-25										
Course CodeB100504P/ BS320YearIIIPre-Requisite10+2		Title of the Course	L	т	Р	с					
Year	III	Semester	V	0	0	4	2				
Pre-Requisite	10+2	Co-requisite									
Course Objectives	The objective of this cour	se is to develop th	e understanding of basics of genetic engineering a	nd PC	R.						

	Course Outcomes								
CO1	The students will be able to isolate genomic DNA from bacteria, plant, and animal tissues.								
CO2	The students will be able to isolate plasmid DNA (<i>E. coli</i>).								
CO3	The students will be able to perform restriction digestion of DNA.								
CO4	The students will be able to perform Agarose Gel Electrophoresis.								
CO5	The students will be able to explain Polymerase Chain Reaction.								

Unit No.	Title of the Unit	Content of Unit	Contac t Hrs.	Mapped CO					
1	Exp-01	Isolation of genomic DNA from bacteria (E. coli)	3	CO-1					
2	Exp-02	Isolation of genomic DNA from plant and animal tissue	3	CO-1					
3	Exp-03	Isolation of plasmid DNA (E. coli)	3	CO-1					
4	Exp-04	Restriction digestion of DNA	3	CO-2					
5	Exp-05	Agarose Gel Electrophoresis	6	CO-3					
6	Exp-06	Demonstration of PCR	6	CO-4					
Refere	ence Books:								
1. Gei	ne Cloning and DNA	Analysis: An Introduction, 6th Edition by T. A. Brown							
2. Sar Labora	 Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 								
e-Lear	ning Source:								

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO-PSO	DO1	000	002	DO1	DOF	DOG	007		0500			
CO	101	POZ	P03	P04	P05	P06	P07	P301	P302	P303	P304	
CO1	3	1						3		3		
CO2	3	1		3		3	1	3	2	3		
CO3	3	1		3		3	1	1		3		
CO4	3	1		3		3	1				3	
CO5	3	1		3	3	3	1				3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25											
Course Code	B100505	Title of the	Bioanalytical Tools	L	Т	Р	С				
	T/BS300	Course									
Year	Ш	Semester	V	3	1	0	4				
Pre-Requisite	10+2	Co-requisite									
	Biology										
Course	The objectiv	ve of this course i	s to introduce various techniques l	ike Chi	romato	graphy	, Centrifugation,				
Objectives	Electrophor	Electrophoresis, Microscopy, Spectroscopy and Radioactivity to the students used in biological									
	research.										

Course C	Course Outcomes								
CO1	Understand the basic concept of chemical bonding.								
CO2	Understand the basics and types of Chromatography and Centrifugation.								
CO3	Study the principles and applications of Electrophoresis and Microscopy.								
CO4	Understand the principles and applications of Spectroscopy techniques.								
CO5	Understand the importance of Radioactivity in biological studies, GM counters and Scintillation counting.								

Unit	Title of the Unit	Content of Unit	Contact	Mapped CO
1	Basics of Biophysics	Chemical bonding - Jonic bond, Covalent bond, Hydrogon	6	CO1
1		bond and Vander-Waals force	0	
2	Chromatography	Introduction & principle of Chromatography, Paper, Thin- layer, column chromatography, HPLC, GLC, Ion exchange chromatography, Affinity chromatography	8	CO2
3	Centrifugation	Principle of centrifugation, Basic rules of sedimentation, Sedimentation coefficient, Various types of centrifuges, Low-speed centrifuge, High-speed centrifuge and Ultracentrifuge, Types of rotors, Application of centrifugation, Differential centrifugation, Density gradient centrifugation- Zonal and Isopycnic.	8	CO2
4	Electrophoresis	Basic principle, Instrumentation and types of Electrophoresis, Agarose gel electrophoresis, PAGE, SDS- PAGE	6	CO3
5	Microscopy	Principle of Light microscopy, Phase contrast microscopy, Fluorescence microscopy, Electron microscopy, TEM and SEM, Permanent and temporary slide preparation	8	CO3
6	Spectroscopic techniques I	Colorimetry, UV-Visible spectrophotometry and Beer- Lambert law, Fluorescence spectroscopy, Infra-Red spectroscopy.	8	CO4
7	Spectroscopic techniques II	Circular Dichroism, Nuclear Magnetic Resonance spectrometry, Atomic absorption, Emission spectrometry, X Ray diffraction, Mass spectrometry	8	CO4
8	Radioactivity	Radioactivity, Types, their importance in biological studies, Measure of radioactivity, GM counters, Scintillation counting.	8	CO5
		Reference Books:		
1. Naray	anan, P: Essentials of Bio	physics, New Age Int. Pub. New Delhi.		
2. Keith	Wilson & John Walker: Pr	inciples and Techniques of Biochemistry and Molecular Biolog	gy.	
3. Upad	hyay, Upadhyay and Nath	: Biophysical Chemistry: Principle and Techniques.		
4. David	l Sheehan: Physical Bioche	emistry Principle and Applications.		
5. Sabaı	ri Ghosal & A. K. Srivastava	a: Fundamentals of Bioanalytical techniques and Instrumenta	tion.	
		e-Learning Source:		

PO- PSO	P01	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со											
CO1	3	1					2	3			3
CO2	3	1					2	3			3
CO3	3	1					2	3			3
CO4	3	1					2	3			3
CO5	3	1					2	3			3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25									
Course Code	B100506T	Title of the	Madical Distochnology		-	D	6		
	/ BS391	Course				P	Ľ		
Year	111	Semester	V	3	1	0	4		
Dro Doguisito	10+2	Co roquisito							
Pre-Requisite	Biology	co-requisite							
Course Objectives	The course	The course has been designed to make students aware of Zoonoses, Fungi and viruses, Pathology of diseases,							
course objectives	Therapies a	nd Medico-legal aspe	ects						

	Course Outcomes
CO1	The student will understand Classifications of pathogenic microbes, Leptospira, Brucella, bacillus anthracis, Medical
	Parasitology: Amoebiasis, Cryptosporidium, Giardiasis, Malaria, Toxoplasmosis, Trichomoniasis, Medical Bacteriology:
	Staphylococcus, Streptococcusandenterococcus, Peneumococcus, Mycobacterium, Bacillus, Salmonella, Shigella,
	Pseudomonas, and Vibrio, , Pathology of Tuberculosis
CO2	The student will understand Adenoviruses, Pox viruses, Hepadnaviruses, Arboviruses, Retroviruses, ellow Fever, Japanese
	Encephalitis, Dengue, Acquired Immune Deficiency Syndrome (AIDS). Medical Mycology: Fungi, Yeast, Pathogenic fungi,
	superficial Mycoses, cutaneous Mycoses, subcutaneous Mycoses, Systemic Mycoses
CO3	The student will understand Blood formation, Anemia; Blood loss anemia, Magaloblastic anemia, Leukaemia, The Parts of Brain,
	BrainTumours, Stem cells: stem cell or Bone marrow transplant
CO4	The student will understand Introduction to chemotherapy and radiotherapy, Human Gene Therapy. Antibiotics: Classificationof
	Antibiotics, Combinations of Antibiotics, Doses of Antibiotics, Side Effects of Antibiotics, General Principles for use of Antibiotics
CO5	The student will understand Social: genetic discrimination: insurance and employment, human cloning, foeticide, sex
	determination, Ethical: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee
	function

Unit	Title of the	Content of Unit	Contact	Mapped
INO.	Unit Definition of	Classifications of nathogonic microhos, different mode of transmissions, types of life	Hrs.	.0
1	Zoonoses	cucles types of bosts medical definitions	6	CO1
2	Bacteriology	Leptospira, Brucella, bacillus anthracis, Staphylococcus, Streptococcusandenterococcus, Peneumococcus, Mycobacterium, Bacillus, Salmonella, Shigella, Pseudomonas, and Vibrio, Pathology of Tuberculosis	8	CO2
3	Parasitology	Amoebiasis, Cryptosporidium, Giardiasis, Malaria, Toxoplasmosis, Trichomoniasis	6	CO2
4	Medical Virology	Adenoviruses, Pox viruses, Hepadnaviruses, Arboviruses, Retroviruses, Yellow Fever, Japanese Encephalitis, Dengue, Acquired Immune Deficiency Syndrome (AIDS).	8	CO3
5	Medical mycology	Fungi, Yeast, Pathogenic fungi, superficial Mycoses, cutaneous Mycoses, subcutaneous Mycoses, Systemic Mycoses.	8	CO3
6	Pathology of diseases	Blood formation, Anemia; Blood loss anemia, Magaloblastic anemia, Leukaemia, The Parts of Brain, Brain Tumours, Stem cells: stem cell or Bone marrow transplant.	8	CO4
7	therapies	chemotherapy and radiotherapy, Human Gene Therapy. Antibiotics: Classificationof Antibiotics, Combinations of Antibiotics, Doses of Antibiotics, Side Effects of Antibiotics, General Principles for use of Antibiotics	8	CO4
8	Medico-legal aspects	Social: genetic discrimination: insurance and employment, human cloning, foeticide, sex determination, Ethical: somatic and germ line gene therapy, clinical trials, the right to information, ethics committee function	8	CO5
Refere	ence Books:			
1.Chae	echter M. Medo	ff G. and Eisenstein BC. (1993) Mechanism of Microbial Diseases 2nd edition. Williams and	Nilkins, Balt	imore.
2. Col	lee, JG. Duguid J	P., Fraser AG., Marimon BP. (1989) Mackie and Mc Cartney Practical Medical Microbiology,	13th Edition	า.
Churcl	hill Livingstone.			
3. Dav	vid Greenwood,	Richard CD, Slack, John Forrest Peutherer. (1992) Medical Microbiology. 14th edition. ELBS	with Church	ill
Living	stone.			
4. Hug	o WB and Russe	II AD. (1989) Pharmaceutical Microbiology IV edition. Blackwell Scientific Publication, Oxfor	d	
5. Sab	ari Ghosal & A. k	K. Srivastava: Fundamentals of Bioanalytical techniques and Instrumentation.		
e-Lear	ning Source:			
PO-	PSO PO1	PO2 PO3 PO4 PO5 PO6 PO7 PS01 PS02	PSO3	PSO4

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4

CO								
CO1	3	1			2	3		3
CO2	3	1			2	3		3
CO3	3	1			2	3		3
CO4	3	1			2	3		3
CO5	3	1			2	3		3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sess	Effective from Session: 2024-25									
Course Code	B100507R / BS392	Title of the Course	Industrial visit and survey report	L	т	Р	с			
Year	III	Semester	V	0	0	4	4			
Pre-Requisite		Co-requisite								
Course	The main objective	The main objective of this course is to provide the students an exposure to various research activities and acquaint								
Objectives	the student with st	ate of the art techniq	ue/instruments used in various reputed research insti	tution	s and i	ndustr	ies.			

	Course Outcomes								
CO1	To develop understanding of state of the art technique/instruments used in various reputed research institutions.								
CO2	To develop understanding of state of the art technique/instruments used in various reputed research institutions. and industries								
CO3	To prepare the tour report.								

PO-PSO	PO1	DO 2	002	DO4	DOE	DOG	DO7	DSO1	DSOD	0502	
CO		101	POZ	P03	P04	P05	P06	P07	P301	P302	P303
CO1	3	1				3	1	3	3	2	3
CO2	3	1				3	2	3	3	2	3
CO3	3	1				3	1	3	3	2	3
CO4	3	1				3	1	3	3	2	3
CO5	3	1				3	1	3	3	2	3
		3- Lov	w Correlation	on; 2- Mode	erate Corre	lation; 3- Su	ubstantial C	orrelation			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from S	Effective from Session: 2024-25										
Course Code	B100601T/BS317	Title of the Course	of the Essentials of Environmental Biotechnology L								
Year	2	Semester	IV	3	1	0	4				
Pre-Requisite	10+2 with Biology	Co-requisite									
Course Objectives	The objective of this bioremediation, was	s course is to deve ste management,	lop the understanding of environmental biote bioleaching, conventional and modern fuels	echno	ology,		-				

Course Outcomes

CO1	Have knowledge of modern fuels and their environmental impact
CO2	Comprehend the Structural and Functional dynamics of microbes, their diversity, activity, and growth, and community profiling their uses as biosensors, bioreporters, and Microchips. Also know about Methanogenesis: methanogenic, acetogenic and fermentative bacteria- technical processes and conditions
CO3	Gain insight on Bioremediation and Phytoremediation of soil & water contaminated with oil spills, heavy metals, and detergents and the use of microbes in degradation of lignin and cellulose using and of pesticides and other toxic chemicals by microorganisms, Degradation of aromatic and chlorinated hydrocarbons and petroleum products.
CO4	Have knowledge of treatment of municipal waste and Industrial effluents, Biofertilizers: Role of symbiotic and asymbiotic nitrogen-fixing bacteria in the enrichment of soil, algal and fungal biofertilizers (VAM).
CO5	Have basic understanding of Enrichment of ores by microorganisms (gold, copper, and Uranium), Environmental significance of Genetically modified microbes, plants and animals.

Unit	Title of the Unit	Content of Unit	Contact	Mapped CO
NO.	0		Hrs.	
	Conventional and	Modern fuels and their environmental impact –		
1	modern fuels	Miethanogenic bacteria, Biogas, Microbial hydrogen	8	CO-1
		Production, Conversion of		
		sugar to alconol Gasonol.		
_	Structural and	Diversity, activity and growth, community profiling,	_	
2	Functional dynamics of microbes	biosensors, bioreporters, Microchips.	6	CO-2
		Methanogenesis: methanogenic, acetogenic and		
3	Methanogenesis	fermentative bacteria- technical processes and conditions	8	CO-2
		Bioremediation of soil & water contaminated with oil spills,		
4	Bioremediation	heavy metals and detergents, Degradation of lignin and	8	CO-3
		cellulose		
		using microbes,.		
		Phytoremediation, Degradation of pesticides and other toxic		
5	Phytoremediation	chemicals by microorganisms, Degradation of aromatic and	8	CO-3
		chlorinated hydrocarbons and petroleum products		
	Waste Management	Treatment of municipal waste and Industrial effluents,	6	CO-
				4
6				
		Biofertilizers: Role of symbiotic and asymbiotic nitrogen fixing		
7	Biofertilizers	bacteria in the enrichment of soil, algal and fungal	8	CO-4
		biofertilizers (VAM).		
		Enrichment of ores by microorganisms (gold, copper, and		
8	Bioleaching	Uranium), Environmental significance of Genetically modified	8	CO-5
		microbes, plants and animals.		
Refere	ence Books:			<u> </u>
1. Mic	robial Biotechnology (199	5) Alexander n. Glazer Hiroshi Nikaido W.H.Freeman and Comp	anv	

2. Molecular biotechnology: Principles and Applications of Recombinant DNA –Bernaral R. Glick and Jack J. Pastemak ASMPress. Washington, D.C (1994).

3. Fungal Ecology and Biotechnology (1993) Rastogi Publications, Meerut.

e-Learning Source:

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	
со												
CO1	3	1				3	1	3	3	3	1	
CO2	3	1				2	1	3	3	3	1	
CO3	3	1				3	3	3	3	3	1	
CO4	3	1				3	3	3	3	3	1	
CO5	3	1		1	2	3	1	3	3	3	1	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

4-

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	: 2024-25							
Course Code	B100603T /	Title of the Food microbiology			H	D	6	
Course Code	BS318	Course	and Biotechnology	L	•	٢	C	
Year	III	Semester	VI	3	1	0	4	
Pre-Requisite	10+2 in Biology	Co-requisite						
	The objective of	this course is to	develop the understanding of the basic concepts	of foc	d and	types	of	
Course Objectives	microorganisms associated with foods and their origin and role, food preservation and fermentation techniques							
	used in dairy indus	stry, enzymes in fo	od technology, dairy products and value addition pro	ducts				

	Course Outcomes
CO1	The students will learn about the role of microorganism in food microbiology
CO2	Gain insight on spoilage of foods by microbes and the microbial examination of food
CO3	Learn about food preservation techniques and fermentation of foods
CO4	Learn about history and evolution of food technology, enzymes used in food industry
CO5	Learn about the microbial flavors in food industry

Unit No.	Title of the Unit	Content of Unit	Cont act Hrs.	Mapp ed CO
1	Introduction to food & nutrition	History, Development and Scope of food microbiology; Concept of food and nutrients; Physiochemical properties of food; Importance and types of microorganisms in food (bacteria, mold and yeast); Food as a substrate for microorganism- Intrinsic and extrinsic factors that affect growth and survival of microbes in food, natural flora and source of contamination of foods in general.	8	CO-1
2	Microbial spoilage of various foods and Microbial examination of food	Principal; Spoilage of vegetables, fruits, meats, eggs, milk and butter, bread, canned foods, DMC, viable count, examination of faecal Streptococci. Food quality monitoring, Biosensors and Immunoassays	8	CO-1
3	Food Preservation	Basic Principles, Methods (heating, freezing, dehydration, chemical preservatives, radiation). Modern technologies in food preservation, Packaging material.	6	CO-2
4	Fermentation of foods	Types of fermentation, production and defects. Fermentation of pickles, butter, cheese, creams, yogurt and ice creams. Probiotics: health benefits, types of microorganisms used, probiotic foods available in market.	8	CO-2
5	Introduction to Food Biotechnology	Historical Background of Food technology. Importance, global trends, codex guidelines, nutritional labelling in India, FSSAI guidelines. Improvements through Biotechnology (e.g. Golden Rice, Potato, Flavr Savr Tomato etc.)	8	CO-3
6	Enzymes in Food Industry	Carbohydrases, Proteasase, Lipases, Modification of food using enzymes: Role of endogenous enzymes in food quality, Enzymes use as processing aid and ingredients	8	CO-4
7	Milk and Milk products	Milk and milk products: Clean milk production, collection, cooling and transportation of milk, Therapeutic value and nutritive value of fermented milk products; Spoilage of milk and milk products; Milkborne diseases; antimicrobial systems in milk; sources of contamination of milk; Chemical and microbiological examination of milk; grading of milk; Starter lactic cultures; management and preparation of starter cultures; starter defects	8	CO-4
8	Value addition products	Value addition products like High Fructose Syrup, Invert Sugars etc. SCPs (e.g. Spirulina, Yeast etc.) as food supplements, Edible fungus: Mushrooms. Potential of Probiotics. Flavour enhancers: Nucleosides, nucleotides and related compounds. Organic acids (Citric acid, Acetic acid) and their uses in foods/food products.	8	CO-4
Refere	nce Books:			
1. Ada	ms & Moss, Food Micro	biology, Published by Royal Society of Chemistry, Cambridge, U.K.		
2. R.S.	Mehrotra – Plant Patho	logy, Tata Mc-Graw Hill		
3. Fraz	ier & Westhoff., Food N	Alcrobiology Tata Mc-Graw Hill (2014)		
4. F00	a processing Biotechnol	ogical Applications, S.S. Marwana and Arora, AsitechPub		
5. LOP				
e-res	inning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4		

PSO										
СО										
CO1	3	1					1	3		
CO2	3	1						3		
CO3	3	1					1	3		
CO4	3	1					1	3	1	
CO5	3	1					1		3	2
1-			Low Correla	tion; 2- Mo	derate Corre	elation; 3- Su	ubstantial Co	orrelation		
			_							

Sign & Seal of HoD

Name & Sign of Program Coordinator

١

Effective from Session: 2024-25										
Course Code	B100607T/BS3 13	Title of the Course	BIONANOTECHNOLOGY	L	т	Ρ	C			
Year		Semester	VI	3	1	0	4			
Pre-Requisite	10+2 Biology	Co-requisite								
Course Objectives	The objective o of nanoscale m	f this course is aterials, Nano	to develop the understandin materials: Biosensors: Biopho	g of the Basics o tonics and Bioir	of nanoted naging an	chnology a d Principle	nd an overview s of Toxicology;			

Course	Outcomes
CO1	Understand the basics of nanotechnology and overview of nanoscale materials.
CO2	Understand the basics of Nanomaterials.
CO3	Understand the basics of Biosensors.
CO4	Understand the basics of Biophotonics and Bioimaging.
CO5	Understand the Principles of toxicology.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction	Introduction to nanotechnology and overview of nanoscale materials, the effect of length scale on properties,	6	CO.1
2	Bionanotechnology	Introduction to bionanotechnology, challenges and opportunities associated with biology on the Nanoscale, bionanotechnology systems, biological and medical applications of Bionanomaterials.	8	CO.1
3	Nanomaterials	Introduction to nanomaterials. DNA-based nanostructures. General surface and colloid chemistry, principles, experimental techniques, surface potential, DLVO theory; Characteristics of nanoparticles, chemical speciation of dissolved species, Environmental behavior of nanoparticles.	8	CO.2
4	Characteristics of nanoparticles	Characteristics of nanoparticles, chemical speciation of dissolved species, Environmental behavior of nanoparticles.	8	CO.2
5	Biosensors	Introduction to biosensors, the biological component, the sensor surface, Immobilization of the sensor molecule, Transduction of the sensor signal: Optical, Electrochemical and Mechanical sensors, Sensor stabilization	8	CO.3
6	Biophotonics	Overview of imaging biological systems, from the cellular level through to whole-body medical imaging, Introduction to biophysics,	6	CO.4
7	Bioimaging	Basic physical concepts in imaging, Major techniques using ionizing and non-ionizing radiation: fluorescence and multi-photon microscopy, spectroscopy, OCT, MRI, X-ray CT, PET and SPECT imaging.	8	CO.4
8	Nanotoxicology	Principles of toxicology; toxicology models, experimental toxicology studies; activation and detoxification mechanisms, importance of biological membrane in toxicology; Toxicology and bioaccumulation of particles. Biological activity of nanomaterials.	8	CO.5
		Reference Books:		

Engines of Creation, K E Drexler, Oxford Paperbacks, New York

.Engines of Creation, K E Drexler, Oxford Paperbacks, New York

Nanosystems: Molecular Machinery, Manufacturing and Computation, K E Drexler, Wiley, ISBN 0471575186
 Our Molecular Future: How Nanotechnology, Robotics, Genetics and Artificial Intelligence Will Transform the World, Prometheus ISBN 1573929921

• Nanobiotechnology-Concepts, Applications and Perspectives edited by CM Niemeyer and CA Mirkin, Wiley-VCH ISBN 527-30658-7

• NanoBiotechnology Protocols in Methods in Molecular Biology Series Edited by SJ Rosenthal and DW Wright, Humana Press, ISBN: 1-58829-276-2

• Understanding Nanotechnology Scientific American, ISBN: 0446679569 Prey (a novel) by Michael Crichton, ISBN: 006621412

e-Learning Source:

www.nanotechweb.org; www.nano.gov; www.nanotec.org.uk

	Course	Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со											
CO1	3	1					1	3	3	3	
CO2	3	1					1	3	3	3	
CO3	3	1				2	1	3	3	3	
CO4	3	1				1	1	3	3	3	
CO5	3	1			1	3	1	3	3	3	1

2-	
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective	from Sess	ion: 2024-25							
Course C	Code	B100602P/BS393	Title of the Course	Fundamentals of Environm Biotechnology Lab	iental L		Т	Ρ	С
Year		2	Semester	IV	C)	0	4	2
Pre-Requ	uisite	10+2 with Biology	Co-requisite						
Course Objectives This course aims to develop the understanding of basics of Algal and fungal culture, est Nitrogen, citric acid, lactic acid, heavy metals, BOD and COD, and examination of bacte Method.						estima teria k	ition c by MP	of N Count	
Course C	Dutcomes								
CO1 0	Culture alg	ae and fungi							
CO2	Perform an	d analyze estimatio	n of citric acid and l	actic acid.					
CO3	Perform an	d analyze estimatio	n of Total Nitrogen	by Kjeldahl method.					
CO4 0	Can perfori	m Bacterial Examina	tion of Water by M	PN Count Method and esti	mate of BOD a	and C	OD		
CO5 I	Estimate he	eavy metals (Iron, cl	nromium and arsen	ic) in water sample					
Exp. No	. Title of Ex	kperiment			Contact Hrs.	Ma	Mapped CO		
Exp-01	Algal and	fungal culture – Yea	st and Aspergillus		10	CO	CO-1		
Exp-02	Estimatio	n of citric acid from	Aspergillus culture.		8	CO	CO-1		
Exp-03	Estimatio	n of lactic acid.			8	со	-2		
Exp-04	Estimatio	n of Total Nitrogen	by Kjeldahl method		8	со	-3		
Exp-05	Bacterial	Examination of Wat	er by MPN Count M	lethod.	8	со	-3		
Exp-06	Estimatio	n of BOD and COD (2 Samples).		10	co	-4		
Exp-07	 Estimation of heavy metals (Iron, chromium and arsenic) in water sample. CO-5 								
Reference	ce Books:								
e-Learni	ng Source:								

	Course A	Articulatio	on Matrix	«: (Mappi	ing of COs w	vith POs and PS	Os)				
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со											
CO1	3	3	1			3	3	3	3	3	2
CO2	3	3	1				3	3	3	3	1
CO3	3	3	1			2	3	Зр	3	3	1
CO4	3	3	1			3	3	3	3	3	2
CO5	3	3	1			3	3	3	3	3	1

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023-24									
Course Code	B100604P /	Title of the	Food microbiology and Biotechnology Lab		т	_	C		
Course Code	BS310	Course	6, 6,		•	٢	Ľ		
Year	III	Semester	VI	0	0	4	2		
Pre-Requisite	10+2	Co-requisite							
Course	The objective of this course is to develop the understanding of food missiphiology and histochnology								
Objectives	The objective of th	The objective of this course is to develop the understanding of food microbiology and biotechnology.							

	Course Outcomes						
CO1	The students will be able to isolate and characterize yeast.						
CO2	The students will be able to isolate and identify important microorganisms of food microbiology.						
CO3	The students will be able to assess the quality of raw milk and preparation of sauerkraut.						
CO4	The students will be able todetermine total proteins by Bradford method.						
CO5	The students will be able to analyse moisture, ash, protein, fat, fiber and carbohydrate in food sample.						

Unit No.	Title of the Unit	Content of Unit	Contac t Hrs.	Mapped CO
1	Exp-01	Isolation and characterization of Yeast used in Bakery/distillery/winery	6	CO-1
2	Exp-02	Isolation & identification of important microorganism of food microbiology	6	CO-1
3	Exp-03	Methylene Blue Dye Reduction Test for Assessing the quality of raw milk.	6	CO-1
4	Exp-04	Preparation of sauerkraut.	6	CO-2
5	Exp-05	Quantitative determination of Total proteins by Bradford method	6	CO-3
6	Exp-06	Proximate analysis of food sample: moisture, ash, protein, fat, fiber and carbohydrate	6	CO-4
Refere	ence Books:			
1.	Aneja, K.R. 1993.	Experiments in Microbiology, Pathology and Tissue Culture, Vishwa Prakashan, New York, State Sta	ew Delhi.	
2.	Dubey, R.C. and M	Aaheshwari. D.K. 2012. Practical Microbiology, S.Chand & Company, Pvt. Ltd., New	v Delhi.	
e-Lear	ning Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO-PSO	DO1	002	002	DO4	DOE	DOG	DO7		DSO2		
CO	PUI	POZ	P05	P04	PUS	PUO	P07	P301	P302	P305	P304
CO1	3	1					1	3			
CO2	3	1						3			
CO3	3	1					1	3			
CO4	3	1					1	3		1	
CO5	3	1					1			3	2

3- Lo

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sess	sion: 2024-25						
Course Code	B100605T/BS39 4	Title of the Course	Applied Biotechnology	L	т	Ρ	с
Year	111	Semester	V	3	1	o	4
Pre-Requisite	10+2 Biology	Co-requisite					
Course Objectives	The objective of t methodology and biodiversity, Gene patentable novelt	10+2 Biology Co-requisite The objective of this course is to make students familiar with Genomics and proteomics, principle, methodology and application of Drug discovery, Bioprospecting and conservation: importance of piodiversity, General theory of free radical and antioxidants, Significance of IPR; Requirement of a patentable povelty. Biosafety and GMOs					

	Course Outcomes
	Get proper knowledge about Genomics, Proteomics and gene expression.
CO1	
	Gain knowledge about Drug Discovery and Designing: Drug and target identification, target validation.
CO2	
CO3	Learn about Bioprospecting and conservation: importance of biodiversity.
	Learn about the basics of Free Radical Biology: General theory of free radical and antioxidants.
CO4	
CO5	Have knowledge of Significance of IPR and Biosafety.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Genomics and Genome annotation	Introduction to genomics, Genome annotation, Alignment, Whole genome sequencing methods, Human genome project and its application	8	CO1
2	Proteomics and its analysis	Introduction to Proteomics, Proteomics classification, Protein expression and its analysis, Bioinformatics in proteomics	8	CO1
3	Drug Discovery and designing	Drug and target identification, Drug and target validation, Molecular docking studies and its Insilco tools e.g. Autodock, GOLD.	8	CO2
4	Bioprospecting and conservation	Importance of biodiversity. biodiversity informatics, databases in biological materials. International efforts and issues of sustainability.	8	CO3
5	Free Radical Biology	General theory of free radical and antioxidants. Free radical mediated damage to	6	CO3
		lipids, proteins and DNA; Natural antioxidants and their applications.		

Т

6	IPR and Patenting	Significance of IPR; Requirement of a patentable novelty; Issues related to IPR protection of software and database; IPR protection of life forms; International convention in IPR; Obtaining patent; Invention step and prior art and state of art procedure; Detailed information on patenting biological products and biodiversity.					
7	Biosafety	Primary Containment for Biohazards; Biosafety Levels; Biosafety guidelines Government of India; Roles of Institutional Biosafety Committee, RCGM, GEAC etc.	8	CO5			
8	GMOs	Definition of GMOs; GMO applications in food and agriculture; 6 Environmental release of GMOs; Risk Analysis; Risk Assessment; Risk management and communication					
Referer	nce Books:						
1.Geno	me, T.A. Brown, Johi	n Willey & Sons Inc.					
2. Mole	2. Molecular Biology of the Cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson, Garland Publishing						
3. Molecular Cell Biology, H. Lodish, A.Berk, S. Zipursky, P Matsundaira, D. Baltimore and J.E. Barnell, W.H. Freeman and Company.							
4. Molecular Biology of the Gene, J.D. Watson, A.M. Weiner and N.H. Hopkins, Addison- Wesley Publishing.							
5. Introduction to Practical Molecular Biology, P.D. Dabre, John Wiley and Sons Inc.							
6. Biotechnology- B.D. Singh							
e-Learning Source:							

PSO O	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
01	2	1					2	2			2
51	3	1					3	3			3
D2	3	1					3	3			3
D3	3	1			1	3	3	3			3
D4	3	1					3	3			3
D5	3	1			3	2	3	3			3

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2024-25							
Course Code	B100606T/ BS395	Title of the Course	Genomics, Proteomics & Metabolomics	L	т	Р	с
Year	III	Semester	VI	3	1	0	4
Pre-Requisite	10+2 Biology	Co-requisite					
Course	The objective of this course is to develop the understanding of Genome sequencing, Genome databases, Genome						
Objectives	analysis, Proteomics and Metabolomics.						

	Course Outcomes
CO1	The students will be able to explain Genome sequencing techniques and Sequencing technology.
CO2	The students will be able to discuss about major Genome databases, Genome analysis, Comparative genomics, Functional
	genomics techniques.
CO3	The students will be able to describe about basic Proteomics technologies.
CO4	The students will be able to describe the basics technologies used in Metabolomics.
CO5	The students will be able to discuss applications of Genomics and Proteomics in various fields of life.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Genome sequencing	Sequencing technology: Sanger sequencing, Maxam-Gilbert sequencing. Pros and cons of these sequencing technologies. Whole shotgun genome sequencing	6	CO1
2	Next generation Sequencing	Sequencing technology: Pyrosequencing, Illumina/Solexa, SOLiD System, Ion Torrent. Introduction to third generation sequencing technologies.	8	CO1
3	Genome databases and Structural genomics	Major Genome databases, Genome analysis and their applications-Structural genomics: Classical ways of genome analysis, large fragment genomic libraries; Physical mapping of Genomes; sequence assembly and annotation.	8	CO2
4	Functional genomics	Functional genomics: DNA chips and their use in transcriptome analysis; Mutants and RNAi in functional genomics. Comparative genomics.	8	CO2
5	Proteomics	Introduction to basic proteomics technology: 1D-SDS-PAGE, 2D-SDS PAGE. Detection and quantitation of proteins in gels. Pros and cons of various staining methods. Yeast-two-hybrid system, cDNA microarrays.	8	CO3
6	Mass spectrometry	Basics of mass spectrometry. MALDI-TOF and ESI, and their application in proteomics, Tandem MS/MS spectrometry, Peptide sequencing by tandem mass spectrometry.	8	CO3
7	Metabolomics	Technologies in metabolomics, Role of Spectroscopy, Electrophoretic and Chromatographic techniques in metabolic profiling. Nutrigenomics.	8	CO4
8	Applications	Applications of genomics and proteomics in agriculture, human health, and industry.	6	CO5
Refere	ence Books:			
1.	Griffiths JF, "An Introc	luction to Generic Analysis".		

L	1.	
	2.	Gene Cloning and DNA Analysis: An Introduction, 6th Edition by T. A. Brown
ſ	3.	Genomics and Proteomics: Functional and Computational Aspects by Suhai and Sándors,
ſ	4.	Genomics and Proteomics: Principles, Technologies, and Applications by Devarajan Thangadurai and Jeyabalan Sangeetha
ſ	5.	The Handbook of Metabolomics and Metabolomics by John C. Lindon, Jeremy K. Nicholson and Elaine Holmes
٢		

e-Learning Source:

Г

PO-PSO	DO1	000	000	DO 4	DOF	DOC	007	DC 01	DC 0.2	DC 0.2	DC04
СО	P01	P02	P03	P04	P05	P06	P07	PS01	PSOZ	P305	PS04
CO1	3	1					1	3	3	2	1
CO2	3	1					2	3	3	2	1
CO3	3	1					1	3	3	2	1
CO4	3	1					1	3	3	2	1
CO5	3	1					1	3	3	2	1

5-

Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD
------------------------------------	--------------------

Effective from Session: 2024-25								
Course Code	B100608R /BS396	Title of the Course	Research Project (minor) and seminar	L	т	Р	с	
Year	111	Semester	VI	0	0	6	6	
Pre-Requisite		Co-requisite						
Course Objectives	The main of research in the fourth s	The main objective of this course is to acquaint the student with various techniques used in contemporary research in microbiology/biotechnology that will be useful in successful completion of their project work in the fourth semester.						

	Course Outcomes				
CO1	To develop synopsis of a defined research problem.				
600					
CO2	To conduct the bench work.				
CO3	To prepare the research report and its oral demonstrations.				
	- F - F				

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО											
CO1	3	1				3	1	3	3	2	3
CO2	3	1				3	2	3	3	2	3
CO3	3	1				3	1	3	3	2	3
CO4	3	1				3	1	3	3	2	3
CO5	3	1				3	1	3	3	2	3

6-

Name & Sign of Program Coordinator	Sign & Seal of HoD